Due to their unique working principle and system design, Harmolign systems do not require any scheduled calibration.
Harmolign has an electro-optical camera that views a set of light emitting targets and thus determines the set of targets’ position in space – doing this for two or more sets of targets simultaneously enables the calculation of their relative position and orientation. If the relationship between a set of targets (a LED Pad) and a mechanical interface – such as the locating features of a LRU tray – is known, the orientation of that interface can be calculated. The LED Pad and the mechanical interface or adapter makes up an LRU PHP (Platform Harmonization Pad).
To measure correctly, Harmolign therefore relies on correct characterization of (1) the camera – meaning that the light propagation errors in the lens/sensor system are accurately known – and (2) the relationship between each set of light emitting targets and the corresponding mechanical interface – meaning that the position of each PHP target relative to the mechanical interface is correctly known.